Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254873

RESUMO

RNA-binding proteins play diverse roles in cancer, influencing various facets of the disease, including proliferation, apoptosis, angiogenesis, senescence, invasion, epithelial-mesenchymal transition (EMT), and metastasis. HuR, a known RBP, is recognized for stabilizing mRNAs containing AU-rich elements (AREs), although its complete repertoire of mRNA targets remains undefined. Through a bioinformatics analysis of the gene expression profile of the Hs578T basal-like triple-negative breast cancer cell line with silenced HuR, we have identified SOX9 as a potential HuR-regulated target. SOX9 is a transcription factor involved in promoting EMT, metastasis, survival, and the maintenance of cancer stem cells (CSCs) in triple-negative breast cancer. Ribonucleoprotein immunoprecipitation assays confirm a direct interaction between HuR and SOX9 mRNA. The half-life of SOX9 mRNA and the levels of SOX9 protein decreased in cells lacking HuR. Cells silenced for HuR exhibit reduced migration and invasion compared to control cells, a phenotype similar to that described for SOX9-silenced cells.

2.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762708

RESUMO

Lysyl Oxidase Like 2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises five lysine tyrosylquinone (LTQ)-dependent copper amine oxidases in humans. In 2003, LOXL2 was first identified as a promoter of tumour progression and, over the course of two decades, numerous studies have firmly established its involvement in multiple cancers. Extensive research with large cohorts of human tumour samples has demonstrated that dysregulated LOXL2 expression is strongly associated with poor prognosis in patients. Moreover, investigations have revealed the association of LOXL2 with various targets affecting diverse aspects of tumour progression. Additionally, the discovery of a complex network of signalling factors acting at the transcriptional, post-transcriptional, and post-translational levels has provided insights into the mechanisms underlying the aberrant expression of LOXL2 in tumours. Furthermore, the development of genetically modified mouse models with silenced or overexpressed LOXL2 has enabled in-depth exploration of its in vivo role in various cancer models. Given the significant role of LOXL2 in numerous cancers, extensive efforts are underway to identify specific inhibitors that could potentially improve patient prognosis. In this review, we aim to provide a comprehensive overview of two decades of research on the role of LOXL2 in cancer.


Assuntos
Amina Oxidase (contendo Cobre) , Neoplasias , Animais , Camundongos , Humanos , Proteína-Lisina 6-Oxidase , Neoplasias/genética , Modelos Animais de Doenças , Regiões Promotoras Genéticas , Aminoácido Oxirredutases/genética
3.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298909

RESUMO

Lysyl oxidase-like 2 (LOXL2) was initially described as an extracellular enzyme involved in extracellular matrix remodeling. Nevertheless, numerous recent reports have implicated intracellular LOXL2 in a wide variety of processes that impact on gene transcription, development, differentiation, proliferation, migration, cell adhesion, and angiogenesis, suggesting multiple different functions for this protein. In addition, increasing knowledge about LOXL2 points to a role in several types of human cancer. Moreover, LOXL2 is able to induce the epithelial-to-mesenchymal transition (EMT) process-the first step in the metastatic cascade. To uncover the underlying mechanisms of the great variety of functions of intracellular LOXL2, we carried out an analysis of LOXL2's nuclear interactome. This study reveals the interaction of LOXL2 with numerous RNA-binding proteins (RBPs) involved in several aspects of RNA metabolism. Gene expression profile analysis of cells silenced for LOXL2, combined with in silico identification of RBPs' targets, points to six RBPs as candidates to be substrates of LOXL2's action, and that deserve a more mechanistic analysis in the future. The results presented here allow us to hypothesize novel LOXL2 functions that might help to comprehend its multifaceted role in the tumorigenic process.


Assuntos
Neoplasias , Humanos , Transição Epitelial-Mesenquimal/genética , Diferenciação Celular , Matriz Extracelular/metabolismo , Adesão Celular , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo
4.
J Clin Med ; 8(5)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071975

RESUMO

The endoplasmic reticulum (ER) is the organelle where newly synthesized proteins enter the secretory pathway. Different physiological and pathological conditions may perturb the secretory capacity of cells and lead to the accumulation of misfolded and unfolded proteins. To relieve the produced stress, cells evoke an adaptive signalling network, the unfolded protein response (UPR), aimed at recovering protein homeostasis. Tumour cells must confront intrinsic and extrinsic pressures during cancer progression that produce a proteostasis imbalance and ER stress. To overcome this situation, tumour cells activate the UPR as a pro-survival mechanism. UPR activation has been documented in most types of human tumours and accumulating evidence supports a crucial role for UPR in the establishment, progression, metastasis and chemoresistance of tumours as well as its involvement in the acquisition of other hallmarks of cancer. In this review, we will analyse the role of UPR in cancer development highlighting the ability of tumours to exploit UPR signalling to promote epithelial-mesenchymal transition (EMT).

5.
Sci Rep ; 7: 44988, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332555

RESUMO

Epithelial-to-Mesenchymal Transition (EMT) is a key process contributing to the aggressiveness of cancer cells. EMT is triggered by activation of different transcription factors collectively known as EMT-TFs. Different cellular cues and cell signalling networks activate EMT at transcriptional and posttranscriptional level in different biological and pathological situations. Among them, overexpression of LOXL2 (lysyl oxidase-like 2) induces EMT independent of its catalytic activity. Remarkably, perinuclear/cytoplasmic accumulation of LOXL2 is a poor prognosis marker of squamous cell carcinomas and is associated to basal breast cancer metastasis by mechanisms no yet fully understood. Here, we report that overexpression of LOXL2 promotes its accumulation in the Endoplasmic Reticulum where it interacts with HSPA5 leading to activation of the IRE1-XBP1 signalling pathway of the ER-stress response. LOXL2-dependent IRE1-XBP1 activation induces the expression of several EMT-TFs: SNAI1, SNAI2, ZEB2 and TCF3 that are direct transcriptional targets of XBP1. Remarkably, inhibition of IRE1 blocks LOXL2-dependent upregulation of EMT-TFs thus hindering EMT induction.


Assuntos
Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Endorribonucleases/metabolismo , Transição Epitelial-Mesenquimal/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/metabolismo , Ativação Transcricional
6.
FEMS Yeast Res ; 15(5): fov030, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26019146

RESUMO

Glucose triggers post-translational modifications of the Saccharomyces cerevisiae plasma membrane H(+)-ATPase (Pma1) that lead to an increase in enzyme activity. The activation results from changes in two kinetic parameters: an increase in the affinity of the enzyme for ATP, depending on Ser899, and an increase in the Vmax involving Ser911/Thr912. Using phosphospecific antibodies, we show that Ser899 and Ser911/Thr912 are phosphorylated in vivo during glucose activation and that protein phosphatase Glc7 is involved in the dephosphorylation of Ser899 upon glucose starvation.


Assuntos
Trifosfato de Adenosina/metabolismo , Glucose/metabolismo , Proteína Fosfatase 1/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Anticorpos/imunologia , Ativação Enzimática , Proteínas de Membrana/metabolismo , Fosforilação , Proteína Fosfatase 1/genética , Processamento de Proteína Pós-Traducional/genética , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
PLoS One ; 8(6): e67080, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825623

RESUMO

The correct biogenesis and localization of Pma1 at the plasma membrane is essential for yeast growth. A subset of PMA1 mutations behave as dominant negative because they produce aberrantly folded proteins that form protein aggregates, which in turn provoke the aggregation of the wild type protein. One approach to understand this dominant negative effect is to identify second-site mutations able to suppress the dominant lethal phenotype caused by those mutant alleles. We isolated and characterized two intragenic second-site suppressors of the PMA1-D378T dominant negative mutation. We present here the analysis of these new mutations that are located along the amino-terminal half of the protein and include a missense mutation, L151F, and an in-frame 12bp deletion that eliminates four residues from Cys409 to Ala412. The results show that the suppressor mutations disrupt the interaction between the mutant and wild type enzymes, and this enables the wild type Pma1 to reach the plasma membrane.


Assuntos
Alelos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação , Multimerização Proteica/genética , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Membrana Celular/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Fenótipo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Neuromuscul Disord ; 22(3): 231-43, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22094069

RESUMO

Myotonia congenita is an inherited muscle disorder caused by mutations in the CLCN1 gene, a voltage-gated chloride channel of skeletal muscle. We have studied 48 families with myotonia, 32 out of them carrying mutations in CLCN1 gene and eight carry mutations in SCN4A gene. We have found 26 different mutations in CLCN1 gene, including 13 not reported previously. Among those 26 mutations, c.180+3A>T in intron 1 is present in nearly one half of the Spanish families in this series, the largest one analyzed in Spain so far. Although scarce data have been published on the frequency of mutation c.180+3A>T in other populations, our data suggest that this mutation is more frequent in Spain than in other European populations. In addition, expression in HEK293 cells of the new missense mutants Tyr137Asp, Gly230Val, Gly233Val, Tyr302His, Gly416Glu, Arg421Cys, Asn567Lys and Gln788Pro, demonstrated that these DNA variants are disease-causing mutations that abrogate chloride currents.


Assuntos
Canais de Cloreto/genética , Saúde da Família , Testes Genéticos/métodos , Mutação/genética , Miotonia/diagnóstico , Miotonia/genética , Adolescente , Adulto , Fenômenos Biofísicos/genética , Biofísica , Linhagem Celular Transformada , Criança , Estimulação Elétrica , Eletromiografia , Feminino , Humanos , Masculino , Potenciais da Membrana/genética , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Espanha , Transfecção , Adulto Jovem
9.
Mol Microbiol ; 79(5): 1339-52, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21205016

RESUMO

Dominant negative PMA1 mutants render misfolded proteins that are retained in the endoplasmic reticulum (ER) and slowly degraded by ER-associated degradation. Accumulation of misfolded proteins in the ER activates an ER-to-nucleus signalling pathway termed the unfolded protein response (UPR). We have used a PMA1-D378T dominant negative mutant to analyse its impact on UPR induction. Our results show that overexpression of the misfolded mutant Pma1 does not lead to activation of the UPR. In addition, in mutants with a constitutively activated UPR the turnover rate of the mutant ATPase is not altered. To determine if the expression of the misfolded mutant protein induces some other kind of response we performed global gene expression analysis experiments in yeasts overexpressing either wild type or dominant lethal PMA1 alleles. The results suggest that the high osmolarity glycerol (Hog1) mitogen-activated protein kinase (MAPK) pathway is activated by both wild type and mutant ATPases. We show that expression of the PMA1 alleles induces phosphorylation of Hog1 and activation of the Hog1 MAPK cascade. This activation is mediated by the Sln1 branch of the stress-dependent Hog1 MAPK network. Finally, we show that at least two other plasma membrane proteins are also able to activate the Hog1 MAPK system.


Assuntos
Perfilação da Expressão Gênica , Expressão Gênica , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Retículo Endoplasmático/química , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Ativação Enzimática , Variação Genética , Proteínas Quinases Ativadas por Mitógeno/genética , Dobramento de Proteína , ATPases Translocadoras de Prótons/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
10.
Traffic ; 11(1): 37-47, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19929866

RESUMO

Misfolded proteins are usually arrested in the endoplasmic reticulum (ER) and degraded by the ER-associated degradation (ERAD) machinery. Several mutant alleles of PMA1, the gene coding for the plasma membrane H (+)-ATPase, render misfolded proteins that are subjected to ERAD. A subset of misfolded PMA1 mutants exhibits a dominant negative effect on yeast growth since, when co-expressed with the wild type allele, both proteins are retained in the ER and degraded. We have used a PMA1-D378T dominant lethal allele to analyse the mechanism underlying the retention of the wild type enzyme by the dominant negative mutant. A genetic screen was performed for isolation of intragenic suppressors of PMA1-D378T allele. This analysis pointed to transmembrane helix 10 (TM10) as an important element in the establishment of the dominant lethality. Deletion of the TM10 was able to suppress not only the PMA1-D378T but all the dominant lethal alleles tested. Biochemical analyses suggest that dominant lethal proteins obstruct, through TM10, the correct folding of the wild type enzyme leading to its retention and degradation by ERAD.


Assuntos
Retículo Endoplasmático/metabolismo , Genes Dominantes , Mutação , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae , Alelos , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Genes Letais , Genes Supressores , Mutagênese Sítio-Dirigida , Dobramento de Proteína , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/fisiologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Microbiol ; 63(4): 1069-77, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17238920

RESUMO

Misfolded proteins are usually arrested in the endoplasmic reticulum (ER) and degraded by the ER-associated degradation (ERAD) machinery. Several mutant alleles of PMA1, the gene coding for the plasma membrane H(+)-ATPase, render misfolded proteins that are retained in the ER and degraded by ERAD. A subset of misfolded PMA1 mutants exhibit a dominant negative effect on yeast growth since, when coexpressed with the wild-type allele, both proteins are retained in the ER. We have used a pma1-D378T dominant negative mutant to identify new genes involved in ERAD. A genetic screen was performed for isolation of multicopy suppressors of a GAL1-pma1-D378T allele. ATG19, a member of the cytoplasm to vacuole targeting (Cvt) pathway, was found to suppress the growth arrest phenotype caused by the expression of pma1-D378T. ATG19 accelerates the degradation of pma1-D378T thus allowing the co-retained wild-type Pma1 to reach the plasma membrane. ATG19 was also able to suppress other dominant lethal PMA1 mutations. The degradation of the mutant ATPase occurs in the proteasome and requires intact both ERAD and Cvt/autophagy pathways. We propose the cooperation of both pathways for an efficient degradation of misfolded Pma1.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Mutação , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoplasma/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Supressores , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/metabolismo
12.
Biochim Biophys Acta ; 1758(2): 164-70, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16510118

RESUMO

Glucose triggers posttranslational modifications that increase the activity of the Saccharomyces cerevisiae plasma membrane H+-ATPase (Pma1). Glucose activation of yeast H+-ATPase results from the change in two kinetic parameters: an increase in the affinity of the enzyme for ATP, depending on Ser899, and an increase in the Vmax involving Thr912. Our previous studies suggested that Ptk2 mediates the Ser899-dependent part of the activation. In this study we find that Ptk2 localized to the plasma membrane in a Triton X-100 insoluble fraction. In vitro phosphorylation assays using a recombinant GST-fusion protein comprising 30 C-terminal amino acids of Pma1 suggest that Ser899 is phosphorylated by Ptk2. Furthermore, we show that the Ptk2 carboxyl terminus is essential for glucose-dependent Pma1 activation and for the phosphorylation of Ser899.


Assuntos
Proteínas Tirosina Quinases/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Membrana Celular/enzimologia , Ativação Enzimática , Genes Fúngicos , Glucose/metabolismo , Cinética , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/genética , ATPases Translocadoras de Prótons/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
FEBS Lett ; 577(3): 322-6, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15556603

RESUMO

Yeast cadmium factor (Ycf1), an ATP-binding cassette (ABC) protein of the multidrug resistance protein subfamily, is a vacuolar GS-conjugate transporter required for heavy metal and drug detoxification. There is evidence that phosphorylation may play a critical role in the function of ABC transporters from higher organisms. In this work, the possibility of Ycf1 phosphorylation was examined using site-directed mutagenesis. We demonstrate that Ser908 and Thr911, within the regulatory domain (R domain), are functionally important for Ycf1 transport activity and likely sites for phosphorylation. Mutation of these residues to alanine severely impaired the Ycf1-dependent cadmium detoxification capacity and transport activity, while replacement by acidic residues (mimicking phosphorylation) significantly suppressed the cadmium resistance and transport defects. Both in vitro treatment of Ycf1 with alkaline phosphatase and changes in the electrophoretic mobility of the S908A, T911A and double mutant S908A/T911A proteins supported the conclusion that Ycf1 is a phosphoprotein. The screening of the yeast kinome identified four protein kinases affecting cadmium detoxification, but none of them was involved directly in the phosphorylation of Ycf1. Our data strongly implicate Ycf1 phosphorylation as a key determinant in cadmium resistance in yeast, a significant finding given that very little is known about phosphorylation of ABC transporters in yeast.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cádmio/toxicidade , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Treonina/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Alanina/metabolismo , Fosfatase Alcalina/metabolismo , Substituição de Aminoácidos , Cádmio/análise , Cádmio/farmacocinética , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Deleção de Genes , Inativação Metabólica , Fosforilação , Mutação Puntual , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...